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Relations between different approaches to the relativistic 
two-body problem 

A Del Sol Mesa and M Moshinskyt 
Institute de Fisica, UNAM. Apdo. Postal 20-364,01000 M6xico DF, Mexico 

Received 14 March 1994 

Abstract The relativistic and quantum mechanical tVc-body problem with interaction has 
been a controversial matter for many decades. In this paper we show that two very different 
approaches to the problem for a particular type of interaction lead lo the same final equation. 
Funhermore, the second of them can be salved exactly in an elemenmy fashion. and leads to 
an equally spaced specmm of a familiar type for the square of the 1oW energy. 

1. Introduction 

In recent years the two-body relativistic problem has been visualized from many different 
angles. In this paper we shall consider only two of the approaches. The first one by 
Moshinsky et al [1,2] emphasizes a single relativistic equation for the two-body problem 
with an interaction which is suggested by the approach for two free Dirac particles, as well 
as by a variational analysis of Barut on the Lagrangian of quantum electrodynamics [3]. 
The second, in which we mainly emphasize the work of Sazdjian 141 and Crater and van 
Alstine (51, starts from mu independent D u x  equations where an interaction is introduced 
in a way in which they remain compatible. 

We shall compaxe these two approaches, emphasizing an interaction which we called 
the Dirac oscillator [6], as it is a particularly simple one, though our analysis allows much 
more general interactions. This will be stressed later on in this article. 

The concept of the Dirac oscillator for the one-particle system was introduced several 
years ago [6] by replacing the momentum p in  the Dirac equation by 

p 4 p - iorp (1) 
where we used units in which h = m = c = I and ,6 is the matrix referred to usually as the 
Dirac matrix [7]. 

2. A single relativistic equation for two particles 

Almost immediately the problem of one body was generalized to two bodies interacting 
through a Dirac oscillator, using a single Poincark invariant equation of the form [1,2] 
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where repeated indices /* indicate summation over p = 0, I .  2,3, while p w ,  s = 1,2 is the 
four-momentum of particle s and yf the corresponding y matrix, while 
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(3) 1 
X L  = x p  - &I + xpz) 

and 

r = (Y;U, , ) (Y;U~)  rl = ( Y : u , ~  rz = (Y:u,) (4) 

where u p  is a unit timelike faur-vector given in terms of the total momentum Pp by 

(5) 

In the centre-of-mass frame when Pi = 0, i = 1,2,3, and where Po = -PO is the total 

T -112 U #  = P*(-PrP ) . 
WE assume also that the two particles have equal mass ml = mz = 1. 

energy, which will be denoted by E ,  equation (2) becomes [1,2] 

where T, p are the relative coordinate and momentum, respectively, of the two particles, 
and as, PI, s = 1,2 are the Dirac matrices for the two particles in the Dirac equation [7]. 

The energy spectrum E ,  as well as the eigenstates, were derived explicitly in an 
elementary fashion [1,2]. 

We note at this point that equation (2) is not the only single Poincad invariant equation 
that can be derived for the two-body problem. For example, if we consider the matrices 
usually denoted by 

yS=iy:y,’y,2y,3 s = 1 , 2  (7) 

they are pseudoscalar ones, but y5l y52 would be a scalar, so we can replace r in (2) by 

ryS l  YSZ (8) 
which would not alter the Poincart invariant, while in the centre-of-mass frame we would 
have to replace 8182 in equation (6) by 81&y5i y52, leaving the equation exactly solvable, 
as will be shown below. 

Having presented the formulation of Moshinsky etal [1,2] for the two-body problem 
with a Dirac oscillator interaction, through a single Poincar6 invariant equation, we would 
like to turn now to a more familiar analysis of this problem using two compatible single- 
particle equations as carried out by many authors, in particular by Sazdjian [4] and Crater 
and van Alstine 1.51. 

3. A system of two relativistic equations 

We shatl consider the single freeparticle Dirac equations in the form used by Crater and 
van Alstine [5], i.e. 

YSS(Y$ , p s  + I)$ = 0 s = 132 (9) 

where we replace the repeated index 1.1 = 0,1 ,2 ,3  by a dot; when passing to the system 
with an interaction we follow the notation of Sazdjian [4], i.e. 

tY5l (n ’ PI t 1) + VI I$ = 0 
{Y52(Y2 ‘ P2 t 1) + v7.116. = 0 

(loa) 
(lob) 
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and the first problem is to prove the compatibility of this system. This is achieved [4,5] 
by multiplying the first equation by YSI (YI . pl + 1) and the second by ysz(y2. p. + 1) and 
substracting, so that from the properties of the y matrices we get [4] 

(11) 
Now as the masses of the two particles are equal and, in our units, take the value 1, we 

(12) 
where P is the total four-momentum while p is the relative one, and, for simplicity, we 
suppressed the index /L. 

{d  - P: f YSl(vl ' PI t 1)vl Y5Z(YZ ' PZ + 1)vZ]@ = 0. 

can write 

PI = P + ( P P )  PZ = - P  + (Pl.2) 

From (12) we see that 

(p:  - p:, = 2 P  ' p .  (13) 
It is usual to require [4,51 that this term, when applied to +, should vanish because then 
in the centre-of-mass frame (i.e. when Pi = 0, i = 1,2,3) it becomes 2P0po and since 
Po (i.e. energy E )  does not vanish, we expect that the application of po = -iafaxo to @ 
vanishes; hence, $I is independent of the relative time xo ,  a fundamental requirement for 
the equations to have physical sense [4,5]. Thus if P . p +  = 0, we see from (1 1) that we 
require that 

YSI(Y1 ' PI + 1)K@ = YSZ(M ' PZ + l)VZ$I (14) 
which implies that 

VI =Y5z(Yz.P2+1)v Vz=Ysl(YI~PI+1)V (15) 
where V has to be a Poincare invariant so that equations (IO) also have this property. The 
simplest way to achieve this behaviour is to define the transverse relative coordinate [4,5] 

x f  = XP' - ( P c x " ' ) P I . ( P , P y  
XF' = x ;  - .2" 

and to define the scalar formed from its contraction with itself as 

p2 = x f x ;  (17) 
so we shall assume that V is a function of p only. 

We now have a set of two compatible equations 

[ YS,(YI , PI + 1) + YSZ(YZ , pz + l)V}@ = 0 (184 

[ ~ 5 2 ( ~ 2 ' P 2 + 1 ) f ~ 5 1 ( Y I ' P I + 1 ) V } @ ' 0 .  (18b) 

If in ( 1 8 ~ )  we transfer V to the left of the operator y s z ( n .  p z +  l), adding a term from 
the commutation which gives a derivative of V with respect to x; ,  and then use (18b) to 
substitute the term Vy5z(yz. pz  + 1) appearing in (1&), we get 

{ ~ s t ( ~ 1 .  P I  + 1) - VYSI(Y, . p1 + 1)v - i m ( n  azv)}+ = o (19) 

where y2 . az = y:a/ax,". 

equation by ySl(l - Vz)-', we finally get 
Moving all the te rm V in (19) to the left-hand side and multiplying the resulting 

[ (n PI + 1) + (1 - v2)-' [ - i m ~ 5 2 ( n .  azv)  + iV(y1 . a l v ) ] } ~  = 0. (204 
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Carrying out a similar analysis, but starting from (18b). we obtain in turn 

( ( y z . p z + ~ ) + ( l  - ~ ~ ) - ~ [ - i y s l m ( y l  . a 1 ~ ) + i ~ ( y z . a z v ) 1 ] + = 0 .  

We now make a change in our function @ using the relation 

(21) 2 -1/2 @ = ( l - V )  ,$ 

and consider the replacements of P I .  p2 indicated in (12). using also the fact that as V is a 
function of p ,  so 

(aviax!) = (av/ap)(ap/a$) E V(X; , /P) ( - I ) "+~.  (22) 
We finally obtain that the equations (20) reduce to 

((n . p +  in . P +  U +  (1 - v Z ) - 1 V [ i ~ 5 1 ~ 5 2 ( M . X ; ) ~ - 1 ~ } ~  = O  (=a) 

{ ( - n . p + f n . ~ +  I ) + ( ]  -~2)-1V[- iy51y52(yI .x ; )p-~1] ,$=0.  (2%) 

Turning now to the centre-of-mass frame where yt.  P = PI Po = -PI E ,  y2.P = PzPo = 
-,%E and multiplying (23a) by PI, and (236) by ,%, recalling that + is independent of xo, 
and using the relations for the three component vectors, 

71 h f f l  7'2 = & a 2  (24) 
we see that by adding the two equations (23) modified in this fashion we finally obtain 

((a1 - Q ~ ) . P + B I + ~ + V [ ~ ( ~ - V ~ ) I - '  

x [ i~Iysly52(7~ . r) - i&y51m(rl . T)] }+ = E$ (25) 

where p and T are the relative spatial three-component vectors of momentum and position, 
while V is a function of the magnitude r and V = (dV/dr). 

It is now a question of selecting the form of the function V ( r ) .  Following Sazdjian 
[41 and Crater and van Alstine [51, we write V as a hyperbolic tangent but, for our future 
purposes, the argument is taken as (wr2/4), i.e. 

V(r) = tanh(wr2/4). (26) 

{ (al - 
We see then that equation (25) becomes 

w 
(P - i p ~ z v s l r 5 2 )  + P I  + 82) 6 = E@ (27) 

and thus has a form similar to that of (6) but now with the extra term ysl ~ 5 2 ,  which, as we 
indicated above, is a possible variant of the two-body Dirac oscillator. 

In fact, the main point of (27) is that it can be solved explicitly, as we shall now proceed 
to show. 

4. Solution of the problem 

Let us first note that ai, QZ, 81, 
[L21 

can be written as four-dimensional matrices, for example 
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Furthermore, we introduce the notation 

so that equation (27) becomes [1 ,2 ]  
( 2 -  E )  a- b+ 0 

a+ -E  0 [ t  0 - E  

where the function q5 is replaced by a four-component column vector with terms &,, 
s, t = 1, 2 as indicated in (30). 

The second and third rows of (30), when applied to @, allow us to express &I, $12 
in terms of @ l l , b ,  so that substituting them in the equations coming from the first and 
fourth TOWS, we obtain a 2 x 2 matrix operator equation for the two components r#ql and 
@22. Introducing then, as in previous work [1 ,2 ] ,  @+ and 4- by the definitions 

we finally obtain an equation of the form 

A-E' 2E [ 2E B - E z ] [ ; f ] = o  
where 

A =(a- - b+)(a+ - 6 - )  = 4 w [ S z  + (S .Q)(S. E )  +L. S'] (334  

(33b) B (a- + b+)(a+ + b-) = 4 4 2  - (S .q ) (S .E)  - L .SI 
and 

are the creation and annihilation operators for the thee-dimensional oscillator of frequency 
w, while 

(35) L = T x p = -i(o x E )  s = *(a1 +U*) fi = q . E  
and we made use of the well known commutation relations of all of these operators. 

operator A, the totai angular momentum 
We note now from (33) that the matrix operator in (32) commutes with the number 

J = L + S  (36) 
and with the parity, the last because it is  invariant under the transformation q -+ -q. 

As in the case in the ordinary Dirac oscillator [l ,  21, the eigenfunctions of (32) can then 
be expressed in terms of oscillator wavefunctions with spin which we can designate by the 
ket [1,2] 

E --f -E .  

"3 (37) 

with the symbols characterizing the total number of quanta ( N ) ,  orbital angular momentum 
(e), total spin (s = 0, 1) and total angular momentum and projection ( j .  m).  

We see then that for definite ( N .  j )  and spin s = 0 we have the single state 

IW, 0 ) j m )  (38) 
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whose parity is (-1)j. For s = 1 and parity (-l)j we also have a single state 

while for the parity -(-I)’ we have the two states 

A Del Sol Mesa and M Moshinsb 

IN(j, 1 ) j 4  (39) 

IN(j f 1, 1)jm). (40) 
To get the eigenvalues E of equation (32), we need to calculate the operators A and E 

For the ket in (38), the result is simple, as for spin s = 0 all contributions containing 
appearing in (33) in the basis of (38), (39) or (40). 

S vanish and the matrix operator (32) becomes the numerical one, 

which leads to a secular equation whose roots are 
E’ = 4 + 4 N o  
E’ = 0. 

(41) 

The vanishing root leads to a phenomenon which the authors have called ‘cockroach 
nest’ [8] and is not significant for ow present discussion, while the value (420) for E’ 
indicates the typical equally spaced spectrum of the oscillator but now for E’ rather than 
E. 

For fixed (N . j )  and spin 1 but parity (-l)j, we have the single state (39) and from 
the relation 

L .s = 2 ‘(52 - L2- S2) (43) 

derived in equation (3.21) of reference [I], we see that the matrix operator (32) becomes 
the numerical one, 

-E2 2E I 
This matrix leads to a secular equation whose roots are 

E Z = 4 + 4 0 ( N  t 2) 
E’ = 0 

(45) 

where we are again only concerned with (46a) and obtain an equally spaced spectrum for 
E’, though displaced by two quanta from the one for s = 0. 

When ( N , j )  are fixed but the parity is -(-l)J, the matrix element of L .  S with 
respect to the states iN(j zk 1, 1) jm)  is trivial if we use (43). On the other hand, the matrix 
elements 

(NV’, I ) jml (S .v ) ( s .S ) IN( t  W m )  (47) 
with e ,  e’ = j f 1 can be evaluated straightforwardly using equations (3.24) of reference 
[I] and their Hermitian conjugate. 

Because of the existence of two states I N ( j  f 1, l ) jm)  instead of one as before, the 
2 x 2 matrix operator in (32) becomes now the 4 x 4 numerical matrix 

(48) 

6 01-E2 

0 1 -  E’ -8 2E 
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where 

The secular equation associated with (48) reduces drastically to the form 
E 4 [ E 2  -,(a + ,6 + 411’ = 0 (50) 

and so, using (49), we have the double roots 
E’ = 4 + 4o(N + 2) E’ = 0 

and thus get the same spectra as in the case of spin s = 1 and parity (-l) j .  
The problem has then, in all cases, an equal spacing between the levels of E Z ,  and 

presents also an extraordinary accidental degeneracy, which implies the presence of a 
symmetric Lie algebra that we plan to analyse in another publication. 

Before concluding, we must remember that our equation (27) was derived from the sum 
of equations (23) when written in the centre-of-mass frame, and appropriately modified. 
What happens when, with the modifications we considered, we look at the difference 
between these equations, again in the centre-of-mass frame? We note that E no longer 
appears in the resulting equation and, again following an analysis very similar to the one 
that led from (27) to (33, we obtain that now e+, e- must also obey the equations 

It is easy to show though that using the relation 

qu, = ai, + isijnq (53) 
for both Pauli matrices 61 and 02,  the curly brackets vanish identically and thus they do not 
impose any further restriction on @+, e-, as we could have expected from the compatible 
character of the two equations (lo) required from the beginning. 

We note that our spectrum for the square of the energy in all cases can be written as 
E’ - 4 = 4 4 N  +s(s + l ) ]  (54) 

where N is the total number of quanta and s is the spin of the two-particle system s = 0. 1. 
For the non-relativistic limit we can write 

E = 2 + <  (55) 

as the joint mass of the two particles is 2 in our units, and we can consider E << 1. 
Disregarding E’, we then obtain 

(56) E = o [ N  + s(s + I ) ]  
which is a very natural expression for the non-relativistic energy of the oscillator. 

5. Conclusion 

Our final remark is that a very convenient single equation for the relativistic two-body 
problem with a Duac oscillator interaction can be derived from very different approaches. 
In one of them [ 1,2] we actually start from one single equation for two free Dirac particles, 
rewrite it in a Poincar6 invariant form and replace the momenta by a linear combination of 
the momenta and the relative coordinate multiplied by an appropriate matrix. 
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In the other approach, one starts wilh two single-particle Dirac equations [4,5], adding 
to each of them interaction terms that are still Poincar6 invariant. One then first imposes 
constraints on these interactions, so that the equations are compatible which implies that 
in the centre-of-mass frame they are independent of the relative time. There appears then 
only a single potential V which, again in the centre-of-mass frame, depends only on the 
magnitude r of the relative coordinate. By adding these two equations, multiplied by 
appropriate factors, we arrive at a single equation which is identical to the one derived in 
the previous paragraph. 

The energy spectrum of  this final equation can be obtained exactly and turns out to give 
an equally spaced spectrum for EZ, as also happens for the energy E of the non-relativistic 
oscillator. 

Note that in both approaches one can include an extra term U ( p )  with p given by 
equation (17). without changing the Poincar6 invariant character of these equations. In the 
centreof-mass frame it would imply that the relative position vector P in equation (27) is 
replaced by U ( r ) r .  We then get a very definite problem that can be discussed along the 
lines leading from equation (27) to (32), but it is unlikely that the latter can be solved in 
the closed form of the example discussed in this paper. 

We will like to extend this conclusion to compare, as suggested by the referees, the 
results of the present paper with others that have appeared in the literature. 

We shall start with our original approach to the relativistic two-body problem with a 
Dirac-oscillator interaction, described by equation (6) of this paper. From the discussion 
given in [2], we see that (by a reasoning similar to that of the present paper) the energy 
spectra of equation (6), associated with the different spins and parities is given by 

Spin Parity Energy 
0 ( -1) j  E' = 4 + 4". E* = 0 (57d 
1 (-I)] E2 = 4 + 4W(N + 1). EZ = 0 (57b) 
1 - (-1)) P(EZ, N, j )  = 0, E' = 0 (574 

where the non-zero energies EZ in (57c) were obtained by the solution of a third-degree 
equation in E', so that writing P explicitly 121 we have 

( E z [ E z  - 4 - 4o(N + l ) l [ E Z  - 4 - 4o(N + 2)] - 6-40' j ( j  + 1)) = 0. (58) 
Clearly, the energy spectrum of equation (6) given by (57) and that of (27) given by (54) 
are quite different, except in the case of s = 0. In view o f  the difference between equations 
(6) and (27) through the scalar term y s ~ y n ,  this should not be more surprising than, for 
example, the difference between the spectra of the oscillator and Coulomb problems. 

Another way to emphasize the difference is to go to the non-relativistic h i t  of both 
(6) and (27). For the latter we see from (56) that it corresponds to a Hamiltonian of the 
form 

H = W ( V .  < + 6'') (59) 
while for the former the non-relativistic limit (which because our units are h = m = c = 1 
is achieved when o << I )  becomes 

(60) 
ClearIy, H does nor distinguish between the relative orientation of L and S while H' does. 

There remains an unanswered question o f  why equation (27) has a degeneracy involving 
all states, while equation (6) presents this property only for states of parity (-1)). This is 
an intriguing question, and the answer to it, following an approach suggested by Quesne 

H' = o(17.t - L . S). 
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[9] for the one-body Dirac oscillator, seems to stem from the fact that equation (27) has a 
supersymmehy not present in equation (6). This point of view, which implies considering 
the solutions of equation (27) both for w and --w, will be developed out in. a future 
publication. 

Finally, we would like to acknowledge a very important approach to the problem due 
to Bijtebier [IO]. As in the case of Sazdjian [4] and Crater and van Alstine [ 5 ] ,  he starts 
with two relativistic equations restricted by a compatibility condition. 

In fact, if p .  P are expressed in terms of the original four-momenta of the two particles 
p ,  and pz and V is taken as V = tanh A, with A being a function of p,  equations (23) of 
the present paper are identical to equations (4.1) of Bijtebier’s paper [lo], However, the 
object of the present paper was not to derive equation (23), which in fact was discussed 
also in a similar form by Sazdjian [4] and Crater and van Alstine [5], but to establish a 
relation between the work of all these authors and the approach pursued by Moshinsky 
et al [1,2]. Furthermore, we discussed a particular form of a Dirac-oscillator interaction 
which allowed us to solve our problem in an explicit and analytic way. We would also 
like to acknowledge the pioneering contributions of Bijtebier to aspects of the relativistic 
many-body problems [ l l ] .  

A question was also raised about the possible applications of the problem discussed in 
this article. While the present analysis had the purely conceptual objective of relating two 
very different approaches to the relativistic and quantum mechanical two-body problem, the 
general viewpoint followed by Moshinsky ef a6 [ 12,131 for particle-antiparticle systems as 
well as for three body problems has had applications to meson and baryon mass spectra 
[13,14]. 
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